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The evaluation of results from primary genomewide linkage scans of complex human traits remains an area of
importance and considerable debate. Apart from the usual assessment of statistical significance by use of asymptotic
and empirical calculations, an additional means of evaluation—based on counting the number of distinct regions
showing evidence of linkage—is possible. We have explored the characteristics of such a locus-counting method
over a range of experimental conditions typically encountered during genomewide scans for complex trait loci.
Under the null hypothesis, factors that have an impact on the informativeness of the data—such as map density,
availability of parental data, and completeness of genotyping—are seen to markedly influence the number of regions
of excess allele sharing and the empirically derived genomewide significance of the associated LOD score thresholds.
In some circumstances, the expected number of regions is less than one-quarter of that predicted under the as-
sumption of a dense map and complete extraction of inheritance information. We have applied this method to a
previously analyzed data set—the Warren 2 genome scan for type 2–diabetes susceptibility—and demonstrate that
more regions showing evidence for linkage were observed in the primary genome scan than would be expected by
chance, across the whole range of LOD scores, even though no single linkage result achieved empirical genomewide
statistical significance. Locus counting may be useful in assessing the results from genome scans for complex traits
in general, especially because relatively few scans generate evidence for linkage reaching genomewide significance
by dense-map criteria. By taking account of the effects of reduced data informativeness on the expected number
of regions showing evidence for linkage, a more meaningful, and less conservative, evaluation of the results from
such linkage studies is possible.

Genomewide linkage scans have become widely used
tools in research efforts to unravel the genetics of com-
plex traits in humans. Since the first published scan, of
type 1 diabetes (Davies et al. 1994), 1100 genome scans
of multifactorial diseases in humans have been published
(Altmuller et al. 2001). However, less than one-third of
these have identified regions achieving genomewide sig-
nificance (at ) when interpreted according toP p .05
guidelines derived on the assumption of dense-marker
genotyping and complete (or near complete) extraction
of inheritance information (Lander and Kruglyak 1995).

This failure to detect significant linkage in a large pro-
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portion of scans reflects a number of processes, ranging
from methodological considerations—such as inade-
quate sample size, extensive clinical heterogeneity, and
latent genotyping error—to etiological factors—such as
the phenotype-genotype relationship and the genetic ar-
chitecture of the trait (Lernmark and Ott 1998; Weiss
and Terwilliger 2000; Altmuller et al. 2001; Nicolae and
Cox 2002). In addition, experimental factors that influ-
ence the proportion of information extracted from the
data set—such as pedigree structure, the completeness
and accuracy of genotype data, and marker density—are
expected to have substantial effects, both on the power
of a study to detect true linkage and on the significance
of any linkage finding. For this reason, it is widely ac-
cepted that accurate estimates of the genomewide sta-
tistical significance of linkage results are best obtained
empirically (Sawcer et al. 1997; Ott 1999; Douglas et
al. 2000; Gordon et al. 2000; Hirschhorn et al. 2001).

An alternative method of evaluating the results of such
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Table 1

Expected Numbers of IRLs per Genome Scan under the Null Hypothesis

MAP DENSITY AND IRL
LOD SCORE THRESHOLDa

EXPECTED NUMBER OF IRLS PER GENOME SCAN

Parental Data Available No Parental Data Available

No Missing
Genotypes

15% Missing
Genotypes

No Missing
Genotypes

15%Missing
Genotypes

10 cM:
� .59 (P �.05) 10.611 9.180 9.002 8.577
� 1.18 (P �.01) 2.820 2.341 2.326 2.125
� 3.00 (P �.0001) .051 .038 .044 .030
� 2.20 .290 .228 .251 .198
� 3.63 .016 .007 .014 .007
� 5.30 .001 .002 0 .001

5 cM:
� .59 (P �.05) 12.609 11.299 10.501 9.720
� 1.18 (P �.01) 3.525 3.099 2.764 2.590
� 3.00 (P �.0001) .070 .061 .044 .033
� 2.20 .375 .314 .263 .244
� 3.63 .022 .013 .008 .010
� 5.30 .002 0 0 0

1 cM:
� .59 (P �.05) 16.680 15.496 14.413 13.581
� 1.18 (P �.01) 5.182 4.624 4.197 3.996
� 3.00 (P �.0001) .107 .093 .091 .068
� 2.20 .597 .537 .449 .449
� 3.63 .031 .027 .023 .022
� 5.30 .002 0 .001 .001

NOTE.—These results are from analyses of 1,000 replicates of 500 two-sib families
analyzed with a linear model using GENEHUNTER PLUS.

a P values in parentheses after each IRL LOD score threshold represent nominal point-
wise significance levels. LOD score �2.20 indicates suggestive linkage, LOD score �3.63
indicates significant linkage, and LOD score �5.30 indicates highly significant linkage,
according to dense-map significance guidelines (Lander and Kruglyak 1995).

genome scans, complementary to the use of genomewide
significance levels, is to compare the actual number of
loci showing evidence for linkage observed from the ge-
nome scan with the number expected by chance, deter-
mined empirically under the experimental and data con-
ditions prevailing in the study. For an evaluation based
on locus counting to be meaningful, however, only in-
dependent (that is, unlinked) regions should be consid-
ered in the comparison. This locus-counting approach
is appealing, because complex traits are under the con-
trol of multiple genes and because evidence for the in-
fluence of at least some of them is anticipated from a
genomewide linkage scan. Furthermore, the ability to
determine whether a genome scan has detected more
regions showing evidence for linkage than expected by
chance when no single region has achieved genomewide
statistical significance will be of particular benefit.

The expected number of loci under the null hypothesis,
determined from the theory of large deviations, formed
the basis of widely used guidelines for significance level
(Lander and Kruglyak 1995): the threshold for designat-
ing a region as showing “suggestive” evidence for linkage

( ) was defined as that LOD score expectedLOD p 2.20
once by chance per genome scan, given a dense map and
near-complete information extraction. However, despite
recent consideration of this measure (Sawcer et al. 1997;
Hsieh et al. 2001; Lindholm et al. 2001), there has been
no formal examination of locus counting as a means
of evaluating results from genetic studies. In particular,
the behavior of such a measure has not been established
under the experimental circumstances when it is most
likely to be used, namely, the evaluation of primary ge-
nome scan data from which complete extraction of in-
heritance information has not been possible. To address
this, we have examined, by simulation, the genomewide
null distribution of the widely used allele-sharing LOD
score for dichotomous traits (using both linear and ex-
ponential models [Kong and Cox 1997]) over a range
of experimental conditions, from which we have derived
the numbers of independent loci over a range of LOD
score thresholds.

For our simulation analyses, we generated complete
autosomal genomes (total length 34.6 M [Kosambi {K}]),
under the null hypothesis of no linkage, for sets of fam-
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Table 2

Empirical Genomewide Significance Levels of IRL LOD Score Thresholds

MAP DENSITY AND IRL
LOD SCORE THRESHOLDa

EMPIRICAL GENOMEWIDE SIGNIFICANCE

Parental Data Available No Parental Data Available

No Missing
Genotypes

15% Missing
Genotypes

No Missing
Genotypes

15% Missing
Genotypes

10 cM:
3.00 (P p .0001) .050 .038 .043 .030
2.20 .259 .205 .222 .181
3.63 .016 .007 .014 .007
5.30 .001 .002 !.001 .001

5 cM:
3.00 (P p .0001) .068 .057 .043 .033
2.20 .315 .262 .231 .216
3.63 .022 .013 .008 .010
5.30 .002 !.001 !.001 !.001

1 cM:
3.00 (P p .0001) .103 .087 .086 .067
2.20 .457 .401 .351 .361
3.63 .031 .026 .023 .022
5.30 .002 !.001 .001 .001

NOTE.—These results are from analyses of 1,000 replicates of 500 two-sib families an-
alyzed with a linear model using GENEHUNTER PLUS.

a P values in parentheses after each IRL LOD score threshold represent nominal point-
wise significance levels. LOD score �2.20 indicates suggestive linkage, LOD score �3.63
indicates significant linkage, and LOD score �5.30 indicates highly significant linkage,
according to dense-map significance guidelines (Lander and Kruglyak 1995).

ilies that each contain only two affected siblings. These
simulations were based on the microsatellite marker
maps from CEPH (Dib et al. 1996; see the Généthon
Web site) and the Marshfield Foundation (Broman et al.
1998; see the Center for Medical Genetics, Marshfield
Medical Research Foundation, Web site), and both as-
sumed markers with four equally frequent alleles and
no undetected genotyping error. To generate data sets
differing in the degree of inheritance information avail-
able for extraction, several parameters were varied, in-
cluding marker density (10 cM and 5 cM, to cover the
range of marker densities encountered in primary ge-
nome scans, and 1 cM, to approximate genomewide
dense mapping); presence and absence of parental ge-
notypes (to model the situations typically encountered
when studying early-onset and late-onset diseases, re-
spectively); and genotyping completeness (0% and 15%
missing genotypes). The effects of varying sample size
(100, 200, and 500 families) were also considered. For
each combination of parameters, we generated 1,000
replicates and analyzed these with both linear and ex-
ponential models implemented in GENEHUNTER PLUS
and ASM (Kong and Cox 1997). We recorded the max-
imum LOD score of every independent region showing
evidence for linkage (IRL), treating such regions as un-
linked (and therefore independent) if their maxima were
�40 cM (K) apart, following the reasoning presented by

Ott (1999). From these, we determined the number of
IRLs observed at various defined LOD score thresholds,
together with the empirical genomewide significance lev-
els of these thresholds.

The results from these simulations, available in full
from the IRL Study, Wellcome Trust Centre for Human
Genetics, Web site, demonstrate that neither sample size
nor analytical model (i.e., linear or exponential) exerts
a strong influence on the null IRL distribution. In the
presentation of our findings here, we therefore con-
centrate on simulations performed under the assump-
tion of 500 sib-pair families, analyzed with a linear
model. Tables 1 and 2 display the number of IRLs ex-
pected under the null hypothesis at several frequently
used LOD score thresholds, together with associated em-
pirical genomewide significance levels; the complete dis-
tributions are shown in figures 1 and 2.

Our simulation results demonstrate the strong impact
of experimental factors that influence the extraction of
inheritance information from genetic data—map density,
availability of parental genotypes, and completeness of
genotype data—on the null IRL distribution and the as-
sociated empirical significances. As expected, the num-
ber of IRLs at any given LOD score threshold rises when
map density increases, parental genotypes become avail-
able, and/or missing genotype rate falls (table 1; fig. 1).
In parallel, the same three parameters influence consid-
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Figure 1 Null IRL distributions for 500 two-sib families, simulated with a missing genotype rate of 15% and analyzed with a linear
model using GENEHUNTER PLUS. The figure shows the effects of three different marker-map densities and the availability of parental genotypes
on the expected number of IRLs per genome scan, over the LOD score threshold range 0.59–6. The position of one IRL expected by chance
per genome scan is indicated by the horizontal broken line.

erably the empirical genomewide significance of the
LOD score thresholds, and the P value associated with
any given LOD score becomes smaller as map density
increases, parental data becomes available, and geno-
typing becomes more complete (table 2; fig. 2).

These findings emphasize the need to account for re-
duced data informativeness when evaluating primary link-
age scans by locus counting, as well as by measures of
statistical significance. Our simulations suggest that, un-
der the experimental and data conditions encountered
during a typical primary autosomal genome scan (a 10-
cM marker map and ∼15% missing genotypes), an IRL
with a LOD score of 1.51–1.55 is expected to occur
once by chance per autosomal genome scan and that a
LOD score of 2.80–2.88 is associated with a genome-
wide significance of .05, depending on the availability
of parental data (table 3). These thresholds contrast with
those of and , respectively,LOD p 2.20 LOD p 3.63
predicted under assumptions of complete information
extraction from dense-marker-map scenarios. However,
these results are in close agreement with thresholds pre-
dicted from single-point analyses, using a 10-cM marker
map (Lander and Kruglyak 1995; Ott 1999), which have
indicated values ∼20% lower than the dense-map thresh-
olds. However, most striking is the decrease in the fre-
quency of an IRL with from once perLOD p 2.20
genome scan—according to the dense-map criteria—

to only ∼0.2 times per scan, under conditions of a typical
primary genome scan (table 1). These findings reveal the
extent to which dense-map criteria may be conservative
when applied to results from primary genome scans
(Witte et al. 1996; Sawcer et al. 1997; Nicolae and Cox
2002).

Our analyses with 1-cM marker maps also demon-
strate, under situations in which near complete extraction
of inheritance information is possible, that the null IRL
distribution shows evidence of convergence to the thresh-
old criteria predicted by large-deviation theory and 0.1-
cM maps (Lander and Kruglyak 1995). From our sim-
ulations using the most informative model (the presence
of parental data and no missing genotypes, with a mean
entropy-based information content of 97%), we expect
∼17 IRLs with , compared with ∼20 pre-LOD � 0.59
dicted for an autosomal genome on the basis of asymp-
totic theory (see equation 1 in Lander and Kruglyak
1995). Furthermore, we expect an IRL with LOD p

to occur once by chance per genome scan, and we1.96
expect an empirical genomewide significance level of .05
to be associated with a LOD score of 3.30 (table 3). These
values compare reasonably well with the published dense-
map LOD score thresholds of 2.20 and 3.63, respectively
(Lander and Kruglyak 1995; Ott 1999).

To illustrate the application of this locus-counting ap-
proach to the evaluation of results from actual genetic
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Figure 2 Empirical genomewide significance levels for 500 two-sib families, simulated with a missing genotype rate of 15% and analyzed
with a linear model using GENEHUNTER PLUS. The figure shows the effects of three different marker-map densities and the availability of
parental genotypes on the empirical genomewide significance levels of the full range of IRL LOD score thresholds. The position of an empirical
genomewide significance level of .05 is indicated by the horizontal broken line.

Table 3

Selected IRL LOD Score Thresholds

MAP DENSITY AND

LOD SCORE

EMPIRICALLY OBSERVED LOD SCORE

Parental Data Available No Parental Data Available

No Missing
Genotypes

15% Missing
Genotypes

No Missing
Genotypes

15% Missing
Genotypes

10 cM:
Expected once by chance per genome scan 1.627 1.548 1.556 1.510
Associated with an empirical genomewide P p .05 2.992 2.877 2.956 2.803

5 cM:
Expected once by chance per genome scan 1.773 1.693 1.644 1.594
Associated with an empirical genomewide P p .05 3.166 3.058 2.928 2.867

1 cM:
Expected once by chance per genome scan 1.962 1.906 1.855 1.839
Associated with an empirical genomewide P p .05 3.304 3.271 3.308 3.161

NOTE.—These results are from analyses of 1,000 replicates of 500 two-sib families analyzed with a linear model
using GENEHUNTER PLUS.

studies, we have reexamined the Diabetes UK Warren 2
genome scan for type 2–diabetes susceptibility (Wiltshire
et al. 2001). This genome scan examined 573 families
multiplex for type 2 diabetes. Most of the families were
small sibships (the majority with only two affected sibs),
with very few parental genotypes. The primary scan
was conducted using an autosomal microsatellite marker
map of 418 markers, with a mean marker spacing of
9.26 cM (Haldane [H]), and the overall missing geno-

type rate in typed individuals was 14% (see the Warren
2 Project Information on the Wellcome Trust Centre
for Human Genetics Web site). To estimate the null dis-
tribution of IRL LOD scores for the Warren 2 study,
1,000 replicates of the autosomal genome were simu-
lated under the null hypothesis of no linkage, using the
precise marker map, allele frequencies, and missing
genotype pattern observed in the experimental data
through use of SIMULATE (see the Laboratory of Sta-



1180 Am. J. Hum. Genet. 71:1175–1182, 2002

Figure 3 Null IRL distribution (i.e., the mean number of IRLs at each LOD score threshold under the null hypothesis) generated from
the Warren 2 genome scan data, and the actual IRL distribution observed from the Warren 2 genome scan, analyzed with an exponential model
using ALLEGRO. The significance limits for the number of IRLs per genome scan, estimated empirically and from a Poisson distribution,P p .05
are shown in order to indicate the significance of the actual IRL distribution. The position of one IRL expected by chance per genome scan is
indicated by the horizontal broken line.

tistical Genetics, Rockefeller University, Web site). These
were then analyzed for linkage, using ALLEGRO (Gud-
bjartsson et al. 2000). To ensure consistency with the
original linkage analyses, which were conducted using
a Haldane map function, regions of linkage were con-
sidered to be independent if their respective maxima
were separated by �55 cM (H), which is equivalent to
40 cM (K).

The actual Warren 2 linkage scan detected 11 IRLs,
with LOD scores �0.59, 7 with LOD scores �1.18, and
1 with a LOD score �2.20 (8p21-22, , ge-LOD p 2.55
nomewide ); no region showed evidence forP p .098
linkage reaching genomewide significance ( ) ac-P � .05
cording to empirical calculations (Wiltshire et al. 2001).
In contrast, the null IRL distribution generated from the
Warren 2 sample suggests that we expect ∼9 IRLs at
LOD �0.59, ∼2 IRLs at LOD �1.18, ∼0.2 at LOD
�2.20, and ∼0.03 at to occur by chance.LOD � 3.63
Furthermore, we expect to see an IRL with LOD p

once by chance, and we expect a LOD score of1.54
2.84 to be associated with an empirical genomewide
significance level of .05. These results agree closely with
those from the simulations shown in tables 1 and 2,

despite the differences in pedigree structure and marker
characteristics between the actual Warren 2 data and the
simulated pedigree data sets. We have compared the ac-
tual distribution of linkage results from the Warren 2
genome scan with the null IRL distribution (that is, the
mean number of IRLs per genome scan at each LOD
score threshold) determined from the Warren 2 sample
(fig. 3). At any given LOD score threshold, the frequency
distribution of regions of linkage approximates a Pois-
son distribution (Lander and Kruglyak 1995). To obtain
an estimate of the significance of our findings, we have
determined the number of IRLs with cumulative prob-
ability of .95 (i.e., representing a one-tailed significance
limit of .05) for LOD score thresholds across the range,
both empirically from our simulations, and from a cu-
mulative Poisson distribution (Ross 1988) with means
taken from the null IRL distribution (fig. 3). We observe
a shift of the actual IRL distribution from the null IRL
distribution toward, and at several points exceeding, the

limits calculated from the null IRL distribution.P p .05
These findings suggest that the Warren 2 genome scan
detected more regions showing evidence for linkage
across the whole LOD score range than would be ex-
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pected by chance, at a significance level of ∼.05, even
though no individual linkage result achieved statistical
significance at the genomewide level.

In conclusion, we have examined the use of locus
counting as an additional method for evaluating com-
plex-trait genome-scan results that is complementary to
measurements (empirical or asymptotic) of statistical sig-
nificance. We have shown by simulation that experi-
mental factors influencing the informativeness of the
data—such as marker density and the availability of
complete genotypes—have a marked effect on the num-
ber of IRLs at given LOD score thresholds expected
under the null hypothesis of no linkage. These factors
must therefore be taken into consideration when un-
dertaking such an evaluation. However, the analytical
model appears to have little impact on null IRL distri-
butions generated from the simple pedigrees examined
here; however, this may not be true for more complex
pedigree structures, and it merits further investigation.
Consequently, for a typical primary (∼10-cM) genome
scan of a complex trait, we expect 8–11 IRLs with

and 2–3 with by chance perLOD p 0.59 LOD � 1.18
scan, depending on the precise characteristics of the data;
IRLs with LOD scores �3 occurring by chance are very
rare events in such scans. Furthermore, we expect to see
by chance one region per genome scan showing evidence
for linkage with a LOD score of between 1.5 and 1.7.

We recommend performing and presenting the results
from such an analysis over the full range of LOD score
thresholds for the data in question and have demon-
strated this approach by application to the Warren 2
genome scan data. When this is done, the shift of the
entire actual IRL distribution in the Warren 2 data, rel-
ative to the null IRL distribution, becomes apparent. The
overall significance of any such shift in actual IRL dis-
tributions can be estimated, as we have shown, although
the development of a formal measure of significance mer-
its attention. Although this method appears promising
as a means of evaluating genome scan results, several
caveats should be emphasized. First, we caution against
performing or reporting such an analysis at a single LOD
score, because this may be unrepresentative and may
invite researchers to present only the most extreme re-
sult. Second, it is important to note that a shift in the
actual IRL distribution is not, itself, a measure of the
genomewide significance of the associated LOD score
thresholds. Third, locus counting does not allow deter-
mination of which regions detected during the actual
study represent true positives and which are false pos-
itives. Despite these caveats, we believe that locus count-
ing will be a useful additional tool for the evaluation of
primary genome scans for complex trait loci. The use of
empirical methods of evaluation that are tailored to the
precise characteristics of the data in question is likely to

provide more realistic and optimistic assessments of the
evidence for complex trait linkage.
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